Harper Emerging Technology BILT: Cybersecurity BILT 6.20.2024

Cyber AI Knowledge Units (Kus)

This includes KUs focusing on 'Security of AI' and 'AI in Cybersecurity'.

- 1. <u>Al Overview</u>
- 2. ML and AI Fundamentals for Cybersecurity
- 3. Legal and Ethical Issues of AI
- 4. Data Protection and Privacy
- 5. Data Sources
- 6. Math Foundations
- 7. <u>AI Algorithms</u>
- 8. Exploratory Data Analysis
- 9. Problem Discovery
- 10. Data Processing and Curation
- 11. Model Selection and Specification
- 12. Model Evaluations
- 13. Security Assessment and Evaluation
- 14. Risk Management of Al
- 15. Databases and Infrastructure
- 16. System Deployment and Operation
- 17. Defensive Applications of AI
- 18. Offensive Applications of AI
- 19. Adversarial Learning
- 20. Security and Governance of AI
- 21. Lifecycle Management of AI
- 22. <u>Regulation and Governance of AI Risks</u>

Knowledge Unit Name

AI Overview

- Topics:
 - Al principles
 - Al terminology and definitions
 - Al history
 - What is AI and AI components
 - Al careers
 - Security of Al
 - Human behavior and performance
 - Future of AI in cybersecurity
 - Basics in security in privacy
 - Real world applications of AI
 - Al applications in general and in cybersecurity
 - AI examples (successes and failures)
 - Al applications use cases
 - Common AI tools and how to evaluate them
 - Emerging applications

Knowledge Unit Name

ML and AI Fundamentals for Cybersecurity

Topics:

- Machine learning, ML Models and Theory
- Natural Language Processing (NLP)
- Generative AI
- Prompt engineering
- Explainable AI
- Defining neural networks
- Training / test / validation data splits
- Parameter tuning
- Overfitting and mitigation
- Performance metrics
- Anomaly detection
- Supervised and unsupervised
- Machine learning, deep learning, neural networks
- Fundamentals of deep neural networks (K-nearest neighbors (KNN), Convolutional Neural Network (CNN), Long-Short-Term-Memory (LSTM), Graph Neural Network (GNN), Recurrent Neural Network (RNN), Neural Networks (NN), deep learning techniques, autoencoders, transformer models, generative AI)
- ML Fundamentals (math foundations, math models, ML algorithms, ML tuning, AI tools)
- Al concepts (Al lifecycle, Al case studies, prompt engineering, data, history, general issues in Al)

Knowledge Unit Name	Legal and Ethical Issues of AI

KU Learning Outcomes (student will be able to):

- 1. Assess AI trustworthiness
- 2. Describe trust vs trustworthiness
- 3. Define trustworthiness requirements for an AI system

- AI Ethics (Equitable AI, Fairness, Biases, Misinformation, Monetary validation)
- Equitable AI (Metrics, Methods)
- AI Ethics (How to quantify / How to protect)
- Bias and fairness of training data
- Trust and related attributes / metrics
- Explainability tools and visualizations
- Calibrated trust
- Certification authorities
- Trustworthy AI taxonomies
- Al uses, benefits, risks
- Ethical concerns

Data Protection and Privacy

Topics:

- Uncertainty management
- AI Security algorithm techniques
- Al privacy protection methods metrics
- AI privacy risk assessments model infrastructure Privacy
- Security (network security, database administration)
- Governance
- Policy (HIPAA, regulations, retention)
- Privacy (noisy data, encryption)
- Documentation
- Human Subjects (training)

Knowledge Unit Nar	ne	Data Sources
Topics:		
 Identificatio 	n	
 Collection st 	Collection strategies	
Data Characteristics		
Data	a modality	
 Class 	s / balance iss	ues
Data	a generation	
 Forr 	mats and stan	dards
 Data 	a providence	
 Volu 	ume, variety, a	nd velocity

Knowledge Unit Name

Math Foundations

- Linear combination and matrix multiplication
- Probability and statistics
- Definition of probability distributions
- Definitions of derivatives, partial derivatives
- Mathematical optimization
- LP norms and vectors

Knowledge Unit Name	AI Algorithms
 Knowledge Unit Name Topics: Al programming Future engineering Rule based systems Programming design Linear and logistics regress Random forests Planning search-based pla Support vector machines Decision trees 	sion nnning
 Naive bayes Knowledge base and representation Clustering algorithms 	

Knowledge Unit Name	Exploratory Data Analysis
Topics: Summary statistics Data visualization Feedback loops	

Knowledge Unit Name	Problem Discovery	
Topics:		
• Problem specification \circ Damage assessment and reduction		
Domain specific requirem	Domain specific requirements	
 Formulating cybersecurity 	 Formulating cybersecurity tasks of ML problems (identify objective, data, performance targets) 	
Communication to non-te	Communication to non-technical audience	
 Identifying problems that 	Identifying problems that can be addressed via ML	
 Risk and societal impact of 	 Risk and societal impact of AI in context of applications 	
• Supply chain (minimize cy	Supply chain (minimize cyber risk)	
Domain-specific expertise	 Domain-specific expertise for threat detection, identification, and mitigation 	

Data Processing and Curation

Topics:

•

- Data Cleaning (Outlier detection, deduplication, normalization, data type, generation, augmentation, imputation
- Representation (vectorization, feature engineering / extraction, graph structure, embedded)
- Feature engineering for Machine Learning for Security (ML4Sec) (categorical vs numerical, embeddings, feature selection / projection
 - Data availability \circ Data ownership \circ Data Integrity
- Sources of data for ML4Cyber (issues with privacy, imbalance, incompleteness, distributional shift; modalities of data)
- Intelligence Analysis / OSZN

Knowledge Unit Name	Model Selection and Specification	
Topics: • Multimodal system for sec • Optimization of COP (Tool • ML Training (model select education, class imbalance / r • Al blindspot • Model im • Model maintenance	curity s, Operators, Third-party) ion / design, training performance monitoring, benc egulation) plementation	hmarking and performance
 Training objectives in adve Familiarization with vulne AI tools 	ersarial nations universities rability of AI system as a hybrid SW / HW system $_{\odot}$	Limitation of assumption of

Knowledge Unit Name	Model Evaluations
Topics:	

• Adversarial examples for the problem

• Model Resilience (adversarial evaluation / red teaming, performance monitoring, tracking distributional shift, recalibration, versioning)

- Evaluation metrics
- Understand AI models and capabilities
- Defense mechanisms \circ Robustness metrics
- Al model performance optimization for false alarm reduction o Al explain ability / output interpretation

Knowle	edge Unit Name	Security Assessment and Evaluation
KU Lea	KU Learning Outcomes (student will be able to):	
1.	Perform threat modeling	of AI systems
2.	Monitor and detect threa	ts of AI systems
3.	Mitigate ML and AI threat	S
	a. Understand AI for	ensics
	b. Perform incident	response and recovery
4.	. Continuous assessment	
5.	. Identify attack surfaces and threat model	
6.	Evaluate and select benchmarking framework	
7.	. Perform security evaluation and produce report	
Topics:		
•	Threat modeling	
•	Monitoring and threat detection	
•	Al forensics	
•	Benchmarking and education	
•	Taxonomy of attacks and defense	
•	 Red teaming tools and frameworks 	
•	 Monitoring and detection 	
•	Al frameworks	

Knowledge Unit Name	Risk Management of AI		
Topics:			
Metrics qualification			
Continuous monitoring	Continuous monitoring		
Risk analysis: data			
Al risk qualifications / me	Al risk qualifications / metrics		
Risk assessment			
Risk management	Risk management		
Risk communication	Risk communication		
Data engineering	Data engineering		
• Human in the loop / top	Human in the loop / top		
 AI risk mitigation 	Al risk mitigation		
 Mitigation planning (acce 	Mitigation planning (accept / mitigate)		
Risk management failures	Risk management failures		
Continuity of operations	Continuity of operations		
 Scenario planning or relat 	ed AI risks		
 Algorithms 			
Models			
Systems / Applications			

Databases and Infrastructure

Topics:

- Databases (Relational, NoSQL, Vector, Hybrid, Graph, Anonymization)
- Infrastructure (Cloud, Networking, Storage, Data Lake)
- Centralized and Distributed (cross cutting)

r			
Knowle	edge Unit Name	System Deployment and Operation	
Topics	Topics:		
•	Damage investigation		
•	 Machine Learning Operations (MLOPS) (data pipeline, deployment infrastructure engineering 		
	(cloud vs on-prem vs edge)		
•	Deployment and integration of Cyber AI applications		
	AL	• •	

AI system vulnerability (Dynamic)

Knowledge Unit Name	Defensive Applications of AI	
Topics:		
Cyber threat intelligence	Cyber threat intelligence	
AI-based NIDS	Al-based NIDS	
Network security for deep	Network security for deep learning	
Al for web security	Al for web security	
Automated system securi	 Automated system security compliance scanner, notification, remediation, at risk reporting 	
Psychological modeling of	Psychological modeling of an insider threat	
Reinforcement learning a	Reinforcement learning and robotics	
Al for blue team	AI for blue team	
Al forensics	Al forensics	
Al-based vulnerability def	Al-based vulnerability defense / repair	
Malware analysis	Malware analysis	
Privacy preserving AI		

Offensive Applications of AI

Topics:

Knowledge Unit Name

- Al for malware curation
- Al red-teaming tool for training
- Al for offensive security
- Al for social engineering
- AI for social media (deepfake, false news, hate speech)
- Al in misinformation
- Al for cyber deception

Knowledge Unit Name	Adversarial Learning	
KU Learning Outcomes (student will be able to):		
1. Craft an advanced attack	1. Craft an advanced attack using a given a model and dataset	
2. Refrain the model and re	2. Refrain the model and reassess robustness	

- 3. Understand taxonomy of attacks and defense
 - a. Conduct a data-poisoning attack
 - b. Detect and prevent a data-poisoning attack

Topics:

- Taxonomy of attacks and defenses
- Formulation of attacker objectives
- Formulation of defender objectives
- Mapping objectives to algorithms
- Measuring robustness correctly

Knowledge Unit Name	Security and Governance of AI
KU Learning Outcomes (student will be able to):	
1. Identify vulnerabilities in connections between AI components	
2. Connect AI models and mitigate risk from vulnerabilities	

- Proactive Defense
- Reactive Defense
- Mitigation Operations (How to execute mitigation plans)
- Privacy
- Al applications (levels of severity, types)
- AI blind spot
- Physical systems controls (electrical grid / access control)
- Keep AI safe from various dangers (physical and cyber threats)
- Potential AI security risks
- Cybersecurity
- Perform direct prompt injection attacks and defense
- Perform indirect prompt injection attacks and defense
- Understand generative AI attacker goals and objectives
- Generate and detect unsafe synthetic data
- Security of federated learning systems
- Security of swarm systems
- Graceful degradation when components lose connectivity
- Security of connected AI models

Knowledge Unit Name

Lifecycle Management of AI

KU Learning Outcomes (student will be able to):

- 1. Identify risk in AI lifecycle
- 2. Differentiate threats at different stages of AI lifecycle
- 3. Implement mitigation techniques

- Terminate or retire AI systems that don't meet the organization's value or standards
- Validation of models
- Certification of AI System
- Ingrain AI into your organization culture before deployment
- Stakeholder engagement and communication
- Data science security and data flow security
- Human-model interaction
- Server authentication of component integration (Third-party?)

Knowledge Unit Name	Regulation and Governance of AI Risks
Topics:	

- AI policies and compliance
- Policy and regulation compliance
- Manage, evaluate, and hold AI accountable
- Onboard AI as your organizations builds new employees and Third-party vendors
- Build integrity into your organization's AI from the design stage
- Intelligence Community (IC) risk framework
 - Global Competition
 - IC use of AI
 - No US person data